If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+16x-75=0
a = 20; b = 16; c = -75;
Δ = b2-4ac
Δ = 162-4·20·(-75)
Δ = 6256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6256}=\sqrt{16*391}=\sqrt{16}*\sqrt{391}=4\sqrt{391}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{391}}{2*20}=\frac{-16-4\sqrt{391}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{391}}{2*20}=\frac{-16+4\sqrt{391}}{40} $
| -108(3.14)=6(3.14)x | | 4/5(x-12)=4 | | 3(x+5)=102 | | 3/4(x-9)=9 | | -16t²+40t=0 | | 2/3(x+8)=10 | | (9x-4)=(6x+20) | | 4(x-3)+4=2(x-3) | | 5-2xx+2=4x-10 | | 4(x-1)+4/5=8 | | v-6.15=4.8 | | 17=-5m-32 | | 5(x-1)=2x-8 | | d-5=68 | | (x+75)(40+x)=6000 | | 5x+12=2(2x+17) | | (x+75)(40+x)=96000 | | 15x-43=8x+18=90 | | 7=2(3x-1)/4 | | x/1500=20 | | 3x-5=6-3x | | (x-2)/4+3=15 | | (x+75)(40+x)=9000 | | 2x+1=20-x | | (x+76)(40+x)=9120 | | 2/7m+4=15 | | 3+2x=2x+11.5 | | 0.3p=6.9 | | 5+3x=41-x | | 4(x+7)=4(2x+7)-4x | | x(x+5)=8(x+3) | | 14-5x+8=22-5x |